A minor alteration with profound consequences

Long-lived proteins may accumulate a range of modifications over time, including subtle alterations such as side-chain isomerization.

In collaboration wryanith the
Julian group in UC Riverside and Benesch group in Oxford we study the effect of isomerisation of an aspartate residue in αB-crystallin, the most abundant chaperone proteins in the eye lens and within the longest-lived proteins in the body. Malfunction of these proteins is linked to a range of diseases, including cataract.

Our results illustrate how age-related isomerization of amino acid residues, which may seem to be only a minor structural perturbation, can disrupt native structural interactions with profound consequences for protein assembly and activity.

Lyon, Y.A., Collier, M.P., Riggs, D.L., Degiacomi, M.T., Benesch, J.L.P., Julian, R.R. (2019). Structural and functional consequences of age-related isomerization in α-crystallins, Journal of Biological Chemisty

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s